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Discussion
This supplemental material provides additional results we

were unable to include in the main paper due to the page limit of
the main paper. Fig. 4, Fig. 5, and Fig. 6 show additional results
of the compared methods by linear least squares, Funt and Bas-
tani [2], and our histogram based approach using hyperspectral
scenes from [3]. The last two figures show additional results of
the camera’s native CST, the CST estimated using least squares
fit together with Funt and Bastani [2] of 24-patch color chart, and
our histogram-based method of our color chart design. These are
done for four different cameras – namely Google Nexus 6, Sam-
sung S6-Edge, LG-G4, and Apple iPhone 7. Two additional test
images (see Fig. 1) are used for the same camera set (see Fig. 7
and Fig. 8).

Optimization Initialization
The input to our method is the color distribution extracted

from the imaged chart in the camera-specific color space. This
assumes the camera is capable of saving images in a raw image
format, either native raw of the camera, or Adobe DNG.

The input distribution is dependent on the camera’s spectral
sensitivities, the calibration pattern design, and the scene illumi-
nation. As a result, the initialization of the input histogram does
affect the final minimization results. We have found the follow-
ing three initializations give good performance. The first is to use
the identity matrix I with small random perturbations along the
diagonal. The second is to do a rough white-balance estimation,
such as applying the grey world method [1] to compute a diago-
nal 3× 3 correction. The white-balanced distribution is used as
the initialization. Finally, in many cases, the raw image file con-
tains the necessary information to compute the camera’s onboard
pre-calibrated CST for the given image. As such, we can use the
camera’s own CST as an initialization. In general, we find that
the CST gives the best result, however, we observed a few cases
where other methods are better. Figure 2 shows an example with
the three different initializations for a Google Nexus 6 captured
under fluorescent illumination. The initialized input histogram is
shown in color, while the target histogram is shown in black. In
this particular example the white-balance initialization produces
the lowest KL-divergence energy from Eq. 1 in main paper. As a
result, one strategy is to compute the result with multiple initial-
izations and take the best result.

Robustness
We performed an experiment to show the added advantages

of our correspondence-free calibration pattern. We examine the
situation where part of the calibration pattern is occluded. This
is shown in Fig 3. In particular, we block a portion of the patch-
based pattern and our pattern that has repetitious colors. In this
situation, the patch-based calibration approach can still be used
to estimate the CST by using only the patches for which corre-

Test image 1
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Figure 1. Three printed test images are used to test the accuracy of the

colorimetric calibration.

Final KL-divergence energy: 8.93 e-041. Initialized using I

2. Initialized using white balance [2] Final KL-divergence energy: 8.99 e-04
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3. Initialized using camera’s CST Final KL-divergence energy: 8.91 e-04

Figure 2. Optimization results obtained from three different initializations

(identity I, white balanced based on [1], and the camera’s CST). This was

performed using an Google Nexus 6 with fluorescent illumination. The final

optimization energy for Eq. 2 in main paper is similar.

spondences can be established. As expected, this has significant
impact on the CST estimated. Our histogram-based method with
the redundant color design is naturally more robust to this situ-
ation and is still able to estimate a high-quality CST to improve
the camera.
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Figure 3. This experiments shows that using a calibration design with redundant colors in the overall distribution can allow our method to still produce a

good result when the chart is partial occluded. This is a drawback for the patch-based methods.
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Figure 4. This compares the colorimetric calibration results for the synthesized 24-patch colour chart and our pattern obtained by blending of the synthesized

24-patch colour chart pathces for three methods (linear least squares, Funt and Bastani [2], and our histogram-based method). Compared is the CST

estimated from a 24-patch color chart, and our results based on our chart design. It should be noted that since Funt and Bastani [2] have to scale CST based

on the brightness of the scene, this may affect their final outcome. The error map is for the scenes between 3-4.
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RMS error:  0.0077
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RMS error: 0.0081
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RMS error: 0.0250 RMS error: 0.0242 RMS error: 0.0242

RMS error: 0.0031 RMS error: 0.0035 RMS error: 0.0050

Scene #11 

RMS error: 0.0123 RMS error: 0.0118 RMS error: 0.0100

Figure 5. This compares the colorimetric calibration results for the synthesized 24-patch colour chart and our pattern obtained by blending of the synthesized

24-patch colour chart pathces for three methods (linear least squares, Funt and Bastani [2], and our histogram-based method). Compared is the CST

estimated from a 24-patch color chart, and our results based on our chart design. It should be noted that since Funt and Bastani [2] have to scale CST based

on the brightness of the scene, this may affect their final outcome. The error map is for the scenes between 5-11.
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RMS error: 0.0110 RMS error: 0.0112 RMS error: 0.0129

RMS error: 0.0216 RMS error: 0.0225 RMS error: 0.0243

Scene #14 

RMS error: 0.0336 RMS error: 0.0345 RMS error: 0.0363

Scene #15 
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Scene #17 
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Scene #18

RMS error: 0.0034 RMS error: 0.0036 RMS error: 0.0040

Figure 6. This compares the colorimetric calibration results for the synthesized 24-patch colour chart and our pattern obtained by blending of the synthesized

24-patch colour chart pathces for three methods (linear least squares, Funt and Bastani [2], and our histogram-based method). Compared is the CST

estimated from a 24-patch color chart, and our results based on our chart design. It should be noted that since Funt and Bastani [2] have to scale CST based

on the brightness of the scene, this may affect their final outcome. The error map is for the scenes between 12-18.



RMS error: 0.0116 RMS error: 0.0048 RMS error: 0.0046 RMS error: 0.0045
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Camera’s native CST

Figure 7. This compares the colorimetric calibration results for the Google Nexus 6, Samsung S6-Edge, LG-G4, Apple iPhone 7. Compared is the camera’s

native CST, the CST estimated from a 24-patch color chart using linear least squares and Funt and Bastani [2], and our results based on our chart design. It

should be noted that since Funt and Bastani [2] have to scale CST based on the brightness of the scene, this may affect their final outcome. The error map is

for test image 2.
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RMS error: 0.0162 RMS error: 0.0068 RMS error: 0.0303 RMS error: 0.0059

RMS error: 0.0301 RMS error: 0.0020 RMS error: 0.0249 RMS error: 0.0024

RMS error: 0.0217 RMS error: 0.0152 RMS error: 0.0590 RMS error: 0.0168

G
o
o
g
le

 N
ex

u
s 

6
S

a
m

su
n

g
 S

6
-E

d
g
e

L
G

-G
4

A
p

p
le

 i
P

h
o
n

e 
7

Camera’s native CST

Figure 8. This compares the colorimetric calibration results for the Google Nexus 6, Samsung S6-Edge, LG-G4, Apple iPhone 7. Compared is the camera’s

native CST, the CST estimated from a 24-patch color chart using linear least squares and Funt and Bastani [2], and our results based on our chart design. It

should be noted that since Funt and Bastani [2] have to scale CST based on the brightness of the scene, this may affect their final outcome. The error map is

for test image 3.


