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Abstract

This paper describes the customization of the camera
processing pipeline of a machine vision camera that has
been integrated into a hand-held dermatological imaging
device. The device uses a combination of visible and non-
visible spectral LEDs to allow capture of visible RGB im-
agery as well as selected non-visible wavelengths. Our cus-
tomization involves two components. The first component
is a color calibration procedure that ensures the captured
images are colorimetrically more accurate than those ob-
tained through the machine vision camera’s native API. The
need for color calibration is a critical component that is
often overlooked or poorly understood by computer vision
engineers. Our second component is a fast method to in-
tegrate the narrow band spectral images (some of which
are outside the visible range) into the visible RGB image
for enhanced visualization. This component of our pipeline
involves evaluating several algorithms capable of multiple
image fusion to determine the most suitable one for our ap-
plication. Quantitative and subject results, including feed-
back from clinicians, demonstrate the effectiveness of our
customization procedure.

1. Introduction
This paper describes a custom imaging device for der-

matological inspection constructed with an integrated ma-
chine vision camera. Machine vision cameras offer sev-
eral advantages over consumer-oriented cameras, such as
DSLR and mobile phone cameras. These advantages in-
clude: (1) a larger sensor offering improved signal-to-noise
performance; (2) the lack of an near-infrared (NIR) filter
that allows non-visible spectral data to be captured; and
(3) supporting software and APIs that allow low-level con-
trol over camera settings and the ability to perform external
event triggering for image capture. One crucial disadvan-
tage of machine vision cameras, often overlooked by com-
puter vision researchers, is that these cameras are typically
not colorimetrically calibrated. Moreover, their supporting
APIs often do not provide any mechanism for color correc-
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Figure 1. (A) Image directly obtained using the machine vision
camera’s API. (B) Result from our customized camera processing
pipeline after color calibration and photo-finishing. (C) Enhance-
ment of the visible imaging using a selected spectral band to high-
light melanin pigmentation. The narrow band image is shown as
an inset.

tion beyond simple per-channel gain manipulation. In addi-
tion, machine vision cameras lack onboard photo-finishing
that allows consumer-oriented cameras to produce percep-
tually pleasing images. When machine vision cameras’ im-
ages are used in applications where the image content needs
to be displayed to users (especially non-vision experts), the
perceived quality of the machine vision imagery often ap-
pears lower than consumer-camera imagery – even though
the overall sensor performance of the machine vision cam-
era is better (see Figure 1).

In addition, for applications that benefit from images
within specific spectral bands – for example NIR spectral
bands – there are a range of different options regarding how
to use this information to enhance a visible three-channel
RGB image. In this paper, we explore these options within
the context of dermatological imaging.
Contribution This paper describes how to customize a ma-
chine vision camera image pipeline to produce high-quality
perceptual images for dermatological applications. As part
of this work, we describe the features provided by a typ-
ical machine vision camera and discuss why they are not
suitable to produce high-quality perceptual images. Our
primary contribution is to overview a calibration procedure
that not only colorimetrically calibrates the machine vision
camera but also allows it to mimic the photo-finishing ap-
plied on consumer cameras. Our dermatological imaging
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Figure 2. Our device: (A) Schematic diagram of our imaging
device. A machine vision camera is integrated inside a closed
housing with a ring of LEDs. The LEDs emit a range of visible
and non-visible spectra targeting different bio-markers for derma-
tological disorders. (B) Image of the current prototype device.

system also has the ability to capture images from select
narrow spectral bands in both the visible and NIR range. As
part of this case study, our secondary contribution is to de-
scribe how select spectral images can be incorporated into
the visible RGB image to provide enhanced imagery. To
this end, we gathered feedback from clinicians to under-
stand their preference regarding which bands and integra-
tion methods are preferred.

2. Imaging Device and Application
The customization described in this paper is for a derma-

tological imaging device that is undergoing clinical evalu-
ation. Figure 2-(A) shows a diagram of the device’s con-
struction. A machine vision camera using a Sony IMX172
12MP RGB sensor is integrated into a closed housing with
an LED light ring. The light ring is composed for eight (8)
LEDs that emitted selected visible and NIR wavelengths,
each targeting different biomarkers (e.g., eumelanin and
hemoglobin). The corresponding LED wavelengths range
between 400-1100 nm. An additional LED that emits
broadband visible light is included. The sensor lacks a hot
mirror that is typically found on consumer cameras to block
NIR light. By triggering image capture with the LED emis-
sion, a visible RGB image in addition to the multiple spec-
tral bands can be captured in a single image capture session.
Figure 2-(B) shows an image of the actual device.

The visible and non-visible images obtained from this
device are used with a proprietary deep-learning module
that provides dermatologists with objective data to decide if
a biopsy is needed for further investigation of a skin lesion.
In addition, the doctors can use the device for magnification
of the target and their own visual inspection. When used
manually, our device can serve as a potential replacement,
or auxiliary device, for existing hand-held dermatoscopes
that use a magnifying lens with an illumination source. We
note that this paper does not discuss the associated deep-
learning system. Instead our focus is on the calibration of
the imaging rig, with emphasis on processing the machine
vision data for perceptual output.

3. Related Work
Related work is discussed in two areas: (1) camera color

calibration and (2) spectral image fusion.
Camera calibration and customization RGB camera sen-
sors have their own spectral sensitivity for each color chan-
nel. As a result, images captured by a camera are in a
sensor-specific RGB color space. An insightful analysis
of the diversity of spectral sensitivities and sensor-specific
color spaces for a wide range of cameras can be found
in [15]. A minimally processed camera image is typically
referred to as a raw-RGB image. Most machine vision cam-
eras and consumer cameras now allow access to the raw-
RGB image. A desirable property of raw-RGB images for
many computer vision tasks is that their response is linear
with respect to scene irradiance.

Colorimetric calibration of a camera sensor is the pro-
cess of computing the mapping of the raw-RGB color space
to a canonical perceptual color space, generally the CIE
1931 XYZ color space or one of its derivatives. Calibra-
tion is generally performed using a color rendition chart
(e.g., an X-Rite Color Chart) that has color patches that
have known CIE XYZ values. By imaging a color chart,
simple linear regression can be used to estimate 3 × 3
matrix transforms based on raw-RGB and CIE XYZ color
correspondences. Early work by Hong et al. [13] suggested
a color space transform based on higher-order polynomial
terms could be used to provide a more accurate mapping.
Recent methods, such as Funt and Bastani [3] and Finlayson
et al. [8, 9], have developed approaches to estimate the col-
orimetric transform when the color rendition chart is non-
uniformly illuminated. Finlayson et al. [11] introduced the
polynomial color correction by using a root polynomial that
makes the high-order transform invariant to camera expo-
sure. Karaimer and Brown [17] and Bianco et al. [5] pro-
posed various weighting schemes for the color space trans-
form that also consider the scene illumination. These afore-
mentioned approaches all target cameras used in standard
imaging scenarios.

There is significantly less work published on customized
color calibration of applied imaging rigs for specific tasks.
Notable examples include Berman et al. [4], who developed
an imaging pipeline for underwater imaging. This work
considered the spectral attenuation that occurs in water me-
dia. Work by Karaimer and Brown [16] introduced a camera
imaging software pipeline that allowed camera emulation
starting with a raw-RGB image input. While their work did
not target a specific application, the software allows easy
customization of the overall camera pipeline for any task.
The lack of a concrete example that details how to calibrate
a machine vision camera beyond simple color mapping is
one impetus for this paper.
Spectral image fusion There are a number of methods suit-
able to perform image fusion. Early work typically re-
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Figure 3. (A) A typical camera imaging pipeline overviews the common steps applied onboard a machine vision camera. (B) A typical
camera imaging pipeline overviews the common steps applied onboard a consumer camera.

lied on copying data from frequency decompositions be-
tween images and then reconstructing a new image (e.g., [7,
20]). More modern methods involve joint-image filter-
ing (e.g., [21, 22]). While these methods are generic in na-
ture, they are suitable for transferring narrow band spectral
data to RGB images.

There are several works focused directly on processing
visible images with the help of non-visible data. For ex-
ample, Krishnan and Fergus [19] showed how noisy low-
light images could be denoised using a corresponding high-
quality NIR image. Similar work by Wu et al. [24] removed
light glows for low dynamic range web cameras using NIR
imagery. Fredembach et al. [12] and Süsstrunk et al. [23]
proposed methods that used NIR images to remove skin im-
perfections like freckles, pores, warts, and wrinkles from
RGB images. Zhang et al. [25] showed how to combine
NIR images to create high-dynamic-range RGB images.
These methods employed variations on joint-image filtering
as discussed above. Recent work by Connah et al. [6] and
Finlayson et al. [10] proposed gradient domain approaches
that avoid both filtering and frequency decomposition.

In this paper, we evaluate several of the methods above
to test their suitability for our application for dermatological
evaluation.

4. Machine Vision versus Consumer Camera
Pipelines

Here we describe the processing steps found on machine
vision cameras and consumer cameras. This section helps
to reveal why machine vision cameras’ images appear vi-
sually different from consumer cameras. The section also
concludes with a short discussion on common issues that
arise when working with machine vision cameras.
Machine vision camera pipeline Figure 3-(A) shows a di-
agram of a machine vision camera pipeline. Although ma-
chine vision cameras are generally more expensive than
consumer cameras, the onboard processing is typically

much simpler. The following steps are typical of most ma-
chine vision cameras.
Step 1: Raw-RGB capture. The raw image is obtained
from the camera sensor in a mosaiced Bayer pattern format.
The data is typically 10–16 bits per channel.
Step 2: Pre-processing. The raw image is linearized to
transform its values to range between 0 and 1. This includes
a black-level offset correction based on the camera’s current
sensor readings.
Step 3: Demosaicing. The image is demosaiced into three
full-sized channels.
Step 4: White balance. An optional white balance can be
applied. This is typically applied as an independent gain on
the red and blue channels only. Most machine vision cam-
eras will provide an auto white balance function or allow
this to be manually set via software API calls. Note that
most APIs do not call this white-balance.
Step 5: Gamma. Most machine vision cameras will al-
low an optional gamma function to be applied to the RGB
image.
Step 6: Output. The final output image can be optionally
quantized to 8-bit, but is typically not compressed.

It is important to note that the machine vision camera
image is still in the sensor-specific RGB space. As a result,
the image is not suitable for display on monitors which as-
sume a standard RGB (sRGB) display-referred color space.
Figure 1-(A) shows an example of a gamma. Although the
image may appear correct, the colors are being incorrectly
interpreted as sRGB.
Consumer camera pipeline This section provides a brief
overview of a consumer camera imaging pipeline; for more
details, readers are encouraged to have a look at [16, 1]. Fig-
ure 3-(B) shows a diagram of a consumer camera pipeline.
Consumer cameras aim for perceptually pleasing images.
Steps 1 and 2 are the same as a machine vision camera and
are not discussed here. Note that some of the steps may be
applied in different orders.



Step 3: A flat-field correction. A spatially varying gain is
applied to correct for uneven light fall on the sensor due to
the camera’s form factor and lens characteristics.
Step 4: Demosaicing. This is applied similarly to the ma-
chine vision camera. Often edge sharpen may be included
to enhance the appearance of the image.
Step 5: Denoising. Many consumer cameras, especially
smartphone cameras, incorporate some type of image de-
noising.
Step 6: White balance. Unlike machine vision cameras,
this is not optional. All consumer cameras apply a white-
balance step. White-balance compensates for the scene il-
lumination and prepares the image for a subsequent color
space transform to map the sensor-specific raw-RGB to a
device-independent perceptual color space.
Step 7: Color space transform. Consumer cameras con-
vert the raw-RGB color space to a perceptual color space
based on CIE XYZ, such as a linear standard RGB (sRGB).
This transform is reliant on the quality of the previous
white-balance step and does have limitations (for more de-
tails see recent work by Karaimer and Brown [17]); how-
ever, in general, the color transform step serves as a reason-
able colorimetric conversion of the raw-RGB image.
Step 8: Photo-finishing. Consumer cameras apply propri-
etary color manipulation to improve the appearance of the
image. While this is shown as a single step in Figure 3-(B),
photo-finishing often involves multiple substeps depending
on the camera. These steps include per channel tone-curves,
application of 3D look up tables (LUT), and selective color
manipulation. Spatially varying photo-finishing can also
be applied. The photo-finishing step generally imparts a
unique look and feel to the final output image that is asso-
ciated with a particular make and model of a camera (e.g.,
Nikon, Canon, iPhone, Samsung).
Step 9: Compression and output. Consumer cameras ap-
ply JPEG compression to the output image. The image is
encoded in a display-referred color space, typically sRGB.
These images are suitable for display.
Remarks Many computer vision researchers are not aware
of the differences between a machine vision and consumer
camera pipeline. Often the API documentation provided
with machine vision cameras does not help to clarify these
issues. The machine vision camera based on the Sony
IMX172 sensor provided additional API calls that allowed
manipulation of the captured image in the Hue, Satura-
tion, Value (HSV) space. While HSV can be used to re-
parameterize an arbitrary RGB color space, it is most of-
ten associated with a gamma-encoded sRGB color space.
The Sony IMX172 documentation failed to mention that the
HSV is in the camera’s raw-RGB color space. Only by call-
ing the manufacturer were we able to assess this. In fact,
the camera’s documentation never specified if a colorimet-
ric conversion was performed onboard the camera.

Not understanding the color space images are saved in
can have serious consequences. For example, when display-
ing sensor-specific RGB images, the observer is not seeing
an image that is correctly calibrated for a display. Another
serious consequence is when the imagery is used to train
machine learning modules. If a deep-learning module is
trained using a sensor-specific RGB input, it may not gen-
eralize well to other input color spaces – as a result, an ap-
plication can be restricted to work with only a particular
make and model of a camera. The following section dis-
cusses how this can be avoided by customizing the camera’s
pipeline of a device.

5. Custom Camera Pipeline and Results
This section describes our customized camera pipeline

for our dermatological imaging device. Further, given the
availability of the narrow band spectral data (including non-
visible bands), we provide a mechanism to use this infor-
mation to enhance our RGB image. Figure 4 shows an
overview of our customized pipeline.
Flat-field correction Because our LED lights are at differ-
ent positions, we need to compute a flat-field correction for
each LED. We can do this by imaging one of the achromatic
patches on a color rendition chart with each LED turned
on. This patch has a uniform reflection and therefore any
deviation in the captured image is assumed to be due to a
combination of light position and lens. To correct the non-
uniform response, we construct a map that inversely scales
each pixel’s intensity to the intensity level in the middle of
the image that the lens focuses on best.

Figure 5 shows the vignetting maps computed for each
nine LEDs. Due to slight misalignment of the camera’s
optical axis with the 3D printed housing of our prototype
device, the flat-field distortion maps are all dominated by
strong fall near the lower region of the imaging field. Such
issues should be resolved with proper industrial design of
the production-level device.
Color calibration Our sensor needs to be colorimetrically
calibrated as discussed in the previous section. We tested
both a 3×3 and a 3×11 matrix color space transform (CST) to
map our raw-RGB values to the CIE XYZ color space. The
3×11 matrix is based on the polynomial equations proposed
by Hong et al. [13]. Since we have a fixed light source in our
imaging device, we do not need to compute a white-balance
matrix. Instead we can directly compute a transform from
the raw-RGB to our target color space. In our case, we map
to linear-sRGB. To compute our CST, we place our device
over each of the color patches in a Macbeth chart and take a
reading with the visible band LED light turned on. Flat-field
correction is applied to the captured images before extract-
ing the raw-RGB color values of each patch.

We use iteratively re-weighted least squares [14] to com-
pute the mapping functions based on the color correspon-
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Figure 4. This figure shows the customized pipeline design which allows the machine vision camera to behave more similarly to a consumer
camera pipeline. A noticeable difference is that we do not need to perform a white-balance step since we will always be imaging under the
same lighting conditions. This means the white-balance can be absorbed into the color space transform. We include additional tone curve
processing and optional color manipulation (3D LUT) to mimic the appearance of consumer cameras. Our pipeline also includes a select
spectral band image pipeline that processes the narrow band spectral image and then integrates it with the RGB image.

dence. To examine the quality of our mapping, we can vi-
sualize the angular error between the target patch colors and
our mapped colors. Angular error is computed as follows:
assuming a target color patch is It = [rt, gt, bt]

T and the
mapped RGB value is Iu = [ru, gu, bu]

T , the angular error
Eang (in degrees) between the two colors is:

Eang =
180

π
cos−1

(
Igt · Iu

‖Igt‖‖Iu‖

)
, (1)

where T is the transpose operator and · is the dot product.
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Figure 5. Flat field correction maps corresponding to the nine dif-
ferent LED lights.

Angular error is often used to measure color differences to
account for potential intensity differences between the two
measurements [17].

We also examine our estimated CSTs on a different set
of color patches consisting of 128 skin colors obtained from
the Munsell Book of Color. The Munsell Book of Color pro-
vides patches that are indicative of skin tones. We also com-
pare the results of applying white balance to the raw-RGB
image. The white-balance gains are computed by measur-
ing an achromatic patch with the device and then adjusting
the camera’s red and blue gain such thatR = G = B for all
pixel intensities in that patch. The angular RGB errors for
each of these methods are shown in Figure 6. We can see
that colorimetric calibration drastically improves the accu-
racy of mapping to a perceptual space.
Photo-finishing After colorimetric conversion, we can send
the linear-sRGB images off to our AI module for image
analysis. However, for visualization, we still need to ap-
ply an additional non-linear mapping. The sRGB standard
specifies a 2.2−1 gamma encoding to brighten the image.
However, all cameras apply a proprietary tone-curve to pro-
cess the image instead of the 2.2−1 gamma encoding. These
tone curves can often be extracted from metadata saved in
the Adobe DNG file format [16]. Additionally, many cam-
eras, especially DSLRs, include a more complicated color
manipulation based on a 3D LUT. The LUTs are associ-
ated with different picture styles settings on the camera
(see [18]).

For our customization pipeline we are able to do both.
Figure 7 shows an example. Figure 7-(A) shows the stan-
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dard output of the machine vision camera. Figure 7-(B)
shows the linear-sRGB result. Figure 7-(C) shows a tone-
curve applied based on Adobe’s standard photo-finishing
tone-curve. This tone-curve is not associated with any par-
ticular camera, but is used by Adobe’s Lightroom software
when no tone-curve is specified. This produces a perceptual
image that looks much more similar to a consumer camera.

Figure 7-(D,E,F) uses meta-data extracted from DNG
files to emulate the following camera modes: D-Nikon
Vivid mode, E-Canon Portrait mode, and F-Olympus Nat-
ural mode. For our working system, we use the Adobe
tone-curve (or a custom curve), however; when desired,
we can produce outputs that mimic existing camera mod-
els. Our colorimetric conversion and photo-finishing can be
performed in real time and are part of the live-view display
feed from the camera based on the visible RGB image.

6. Spectral data fusion
As part of our customized pipeline, we allow the RGB

image to be enhanced using selected spectral bands. Which
band to use for enhancement is currently manually spec-
ified. Note that this process cannot yet be performed in
real time, but instead takes around 1.5–3 seconds per image.
This part of our setup is currently not integrated onboard the
camera processor, but can be incorporated in future designs.

As shown in Figure 4, our device must first capture and
process the single-channel spectral bands using a simpli-
fied pipeline. Since these images are not obtained from the
visible spectrum, there is no need to perform colorimetric
calibration. Moreover, these bands are not demosaiced, but
instead the channel most sensitive to the imaged spectra is
used (e.g., the raw-B channel for the lights corresponding
shorter wavelengths, the raw-R channel for longer wave-
lengths, such as NIR). Once the image is captured, flat field
correction is applied and the images are upsampled to the
RGB image’s size. Using this image we can perform en-
hancement. Figure 8 shows the visible and the correspond-

ing spectral images for two sample skin lesions.
We have examined the following three spectral (3) fusion

methods. Each is based on a different strategy, including
bilateral filtering, Laplacian pyramid filtering, and wavelet-
based image fusion.
(1) Bilateral filter [12]: The first method that we use
is based on the work by Fredembach et al. [12]. While
the authors proposed a method that fused NIR to a visible
image to remove skin imperfections, we used the spectral
data instead to boost the nonvisible details. This method
is based on the fast bilateral filter method introduced by
Paris and Durand [21], which is applied on both the visible
luminance image and single-channel spectral image. The
method works by decomposing the photo-finished sRGB
image into the YCrCb color space. A detail layer is ob-
tained from the spectral image by subtracting the input im-
age from its filtered version. This layer is added to the fil-
tered Y channel of the sRGB filtered image. The modified
Y channel is recombined with the CrCb channels to produce
the final output with enhanced details from the spectral im-
age.
(2) Fast local Laplacian filters [2]: Our second method
is based on the fast local Laplacian filters. This method was
proposed by Aubry et al. [2], who provide a performance
modification over local Laplacian filters first introduced by
Paris et al. [22]. While local Laplacian filters were not used
for image fusion, the method is fairly straightforward to al-
low sharing of information between two images. Specifi-
cally, we use the algorithm outlined in [2] to compute nine
(9) levels of the Gaussian pyramid for the spectral image, as
well as the corresponding Gaussian pyramid and the Lapla-
cian pyramid of the visible image’s Y channel. Afterwards,
we remapped the narrow band image using the S-shaped
curve as done in [2] to boost the local gradients of the spec-
tral image. These boosted gradients are blended with the
local gradient information from the Y channel of the RGB
image. Before we collapse the combined Laplacian pyra-
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Figure 8. The visible and corresponding narrow band images for two different melanocytic nevus lesions. The first lesion (top row) has a
structure that extends deeper into the skin; this is apparent in the individual spectral bands. The second lesion (bottom row) is primarily on
the outer layer of the skin and contributes very little to the spectral bands.

mid, the last level of the Gaussian pyramid is copied from
the visible Y channel. This effectively transfers the spectral
image’s details to the visible image Y channel. The mod-
ified Y channel is recombined with the CrCb channels to
produce the final output.
(3) Wavelet-based image fusion: Our last method is
a wavelet-based image fusion approach that was also dis-
cussed in [12]. This method also starts by converting the
photo-finished sRGB image to the YCbCr color space. A
wavelet decomposition is applied using a Symlet wavelet
generator on the Y channel of the visible image and the se-
lected spectral image. After the coefficients are calculated,
the wavelet coefficients in the visible image’s Y channel are
replaced by the corresponding spectral image’s wavelet co-
efficient if its coefficient’s magnitude is larger. Reconstruct-
ing the image with the fused wavelet coefficients performs
the image fusion on the Y channel. The new Y image is
recombined with the CrCb channels of the visible image to
produce the final output.

Figure 9 shows the results of the three approaches. While
these results are subjective in nature, our observations are
that the local Laplacian filter and bilateral filter methods
give similar performance. The wavelet-based methods tend
to introduce low frequency intensity shifts in the overall im-

age. The bilateral and local Laplacian filter methods both
run in about 2 seconds on a standard workstation PC. The
narrow band spectral fusion is still an area of ongoing in-
vestigation and will require several rounds of user study
to determine the most preferred methods by practitioners.
However, regardless of which method will be eventually be
adopted, the overall processing pipeline for this image fu-
sion will be based on our current customized pipeline de-
sign.
Clinical feedback In order to find out if there was a prefer-
ence between the methods and the different spectral bands,
we conducted a simple study with practicing dermatologists
who have been evaluating the device.

The clinicians examined the visible image and the corre-
sponding spectral images as well as the three fusion meth-
ods. We showed ten cases and for each case we asked three
questions:
(1) Among the three methods used to perform spectral
image fusion, do you have a preferred method?
(2) Is there a particular spectral image that you feel provides
the most information?
(3) Do you feel this type of fusion is useful for you in
a clinical setting (i.e., would it help you make a more
informed decision)?
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Figure 9. This figure shows the results of several different narrow band spectral images being used to modify the photo-finished sRGB
image. The methods applied are the bilateral filter based on a method by Fredembach et al. [12], a local Laplacian filtering approach based
on the method proposed by Aubry et al. [2], and a wavelet-based method. While there are subtle differences, the bilateral filter and local
Laplacian give similar performance and are preferred over the wavelet-based results.

The feedback was as follows. For question 1, dermatolo-
gist 1 chose the wavelet-based method eight times out of ten
samples. Similarly, dermatologist 2’s preference was the
wavelet-based method, which was chosen seven times out
of ten examples. Dermatologist 3 chose the method based
on bilateral filtering of all their choices.

Regarding which wavelengths to fuse, band 8 (the high-
est NIR band) was the most preferred. Dermatologist 1 pre-
ferred band 1 (the lowest UV band) seven times out of ten
cases. Dermatologist 2 equally chose band 2 and band 8
three times out of ten samples, and dermatologist 3’s pref-
erence was band 8 nine times out of ten examples. This sug-
gests that the NIR data, especially for longer wavelengths,
provided useful information to the clinicians.

For the last question, comments from our participants
include “Yes, I think that the fusion is very helpful” and “I
could see the pattern of each lesion much better (reticular,
dots, borders).” One dermatologist who was neutral on the
idea of fusion commented “only in certain cases.” While the
preferences of the dermatologists were not always consis-
tent with each other, their individual preferences were con-
sistent.

7. Concluding Remarks

This paper has detailed a custom in-camera processing
pipeline for a dermatological imaging device that captures
both visible and selected narrow band spectral information.
As part of this work, we have described the basic cam-
era processing pipelines found on machine vision cameras
and discussed limitations that are often overlooked in ap-
plications of this nature – namely, the lack of colorimetric
calibration and photo-finishing on machine vision cameras.
We have provided a detailed description of how to calibrate
our camera to improve the colorimetric accuracy as well as
mimic the photo-finishing routines found on consumer cam-
eras. While our work targets a dermatological device, we
believe information described in this paper will be useful
for the design of similar devices.

Specific to our dermatological application, we are still
exploring ways to integrate the narrow spectral bands for
image enhancement. Currently we use only a single spec-
tral band at a time. Combining multiple bands may allow
doctors to assess skin lesions faster. Addressing these is-
sues is part of ongoing work. Based on our pilot user study,
however, given the diversity in opinions regarding which
bands are most useful, we advocate allowing manual selec-
tion over an automated strategy.
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