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Abstract To detect and classify vehicles in omnidirectional videos, we pro-
pose an approach based on the shape (silhouette) of the moving object ob-
tained by background subtraction. Different from other shape based classifi-
cation techniques, we exploit the information available in multiple frames of
the video. We investigated two different approaches for this purpose. One is
combining silhouettes extracted from a sequence of frames to create an av-
erage silhouette, the other is making individual decisions for all frames and
use consensus of these decisions. Using multiple frames eliminates most of the
wrong decisions which are caused by a poorly extracted silhouette from a sin-
gle video frame. The vehicle types we classify are motorcycle, car (sedan) and
van (minibus). The features extracted from the silhouettes are convexity, elon-
gation, rectangularity, and Hu moments. We applied two separate methods of
classification. First one is a flowchart based method that we developed and
the second is K nearest neighbour classification. 60% of the samples in the
dataset are used for training. To ensure randomization in the experiments,
3-fold cross-validation is applied. The results indicate that using multiple sil-
houettes increases the classification performance.
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1 Introduction

Omnidirectional cameras provide 360 degree horizontal field of view in a single
image (vertical field of view varies). If a convex mirror is placed in front of
a conventional camera for this purpose, then the imaging system is called a
catadioptric omnidirectional camera. Example images from such a camera are
given in Fig. 1. Despite its enlarged view advantage, so far omnidirectional
cameras have not been widely used in object detection and also in traffic
applications like vehicle classification.

(a) (b)

Fig. 1: Two sample omnidirectional images from our dataset. (a) Image with
a van (b) Image with a car.

Object detection and classification is an important research area in surveil-
lance applications. A diverse range of approaches have been proposed for object
detection. A major group in these studies uses the sliding window approach
in which the detection task is performed via a moving and gradually grow-
ing search window. Features based on gradients, gradient magnitudes, colours,
etc. can be used for classification. A significant performance improvement was
obtained with this approach by employing HOG (Histogram of Oriented Gra-
dients) features [8]. Later on, this technique was enhanced with part based
models [12].

Regarding HOG features, the sliding window approach was applied to om-
nidirectional cameras as well [7], where HOG computation was mathematically
modified for catadioptric omnidirectional camera geometry. With a similar
aim, [13] introduced distortion adaptive descriptors where SIFT and HOG
descriptors were computed directly on the wide-angle image by compensating
the effect of high amount of radial distortion. Haar-like features were also used
with omnidirectional cameras either by converting the image to a panoramic
one [17] or directly on the omnidirectional image [10].
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Traffic applications require processing of videos where sliding windows in
each frame is not feasible. In a recent study [1], HOG features are extracted
from the image patches which were identified with a tracking module based on
template matching. After the dimension of feature space is reduced, classes are
modelled as Gaussian distributions. Classification is performed by assigning
samples according to Maximum A Posteriori (MAP) criterion. In this study,
vehicles are classified into two classes; tall vehicles (trucks, buses etc.) and
short vehicles (cars, vans etc.).

Another major group for object detection uses shape based features af-
ter background subtraction step. For instance, [23] created a feature vector
consisting of area, breadth, compactness, elongation, perimeter, convex hull
perimeter, length, axes of fitted ellipse, centroid and five image moments of
the foreground blobs. Linear Discriminant Analysis (LDA) is used to project
the data to lower dimensions. Classification is performed by weighted K near-
est neighbour (kNN).

When we compare the approaches that use image based features (HOG or
Haar-like features) with the approaches that use shape features extracted from
silhouettes, extracting shape features is computationally cheaper. Moreover, to
decrease the computational load, one should extract image based features only
for the region where the moving object exists. Even in that case, fitting a single
window around the object is not an easy task especially for omnidirectional
cameras. For instance, in [14], where HOG features are computed on virtual
perspective views generated from omnidirectional images, object windows are
located manually. This makes the approaches using image based features un-
suitable for most real-time applications. Motivated by these facts, we decided
to develop a shape based method for omnidirectional cameras. Before giving
the details of our method, let us present more related work on shape based
methods for vehicle classification.

In one of the earliest studies on vehicle classification with shape based fea-
tures, authors first apply adaptive background subtraction on the image to
obtain foreground objects [15]. Location, length, width and velocity of vehicle
fragments are used to classify vehicles into two categories; cars and non-cars.
In [20], position and velocity in 2D, the major and minor axis of the ellipse
modelling the target and the aspect ratio of the ellipse are used as features
in a Bayesian Network. In a ship classification study, researchers use MPEG-7
region-based shape descriptor which applies a complex angular radial trans-
form to the shape and classify ships to 6 types with kNN [21]. A 3D vehicle
detection and classification study which is based on shape based features, uses
the overlap of the object silhouette with region of interest mask which corre-
sponds to the region occupied by the projection of the 3D object model on
the image plane [4]. In [6], a similar 3D model based classification is compared
with using 2D shape based features and SVM classifier. Later on, they con-
catenated shape based features and HOG features to create a combined vector
to represent each blob and used this method for semi-automatic annotation of
vehicles from videos [5].



4 Hakki Can Karaimer et al.

Instead of standard video frames, [22] employs time-spatial images which
are formed by using a virtual detection line in a video sequence. Feature vector
obtained from the foreground mask includes width, area, compactness, length-
width ratio, major and minor axis ratio of fitted ellipse, and rectangularity.
The samples are classified by K nearest neighbour algorithm.

Although not applied to vehicle classification, a radically different method
using silhouettes was proposed by [9]. They define “silhouette distance signal”
which is the sum of distances between centre of a silhouette and contour points.
A silhouette is classified by comparing its distance signal with the ones in
the template database. In [2], silhouettes are described with Shape Context
descriptors and these are used to align the shapes, i.e. to recover the geometric
transformation between the shape to be classified and the ones in the training
set. Classification step employs Blurred Shape Model descriptions [11] and K
nearest neighbours (kNN).

Regarding the shape based classification studies with omnidirectional cam-
eras, the only work that we found in the literature [18] uses only the area of
the blobs and classifies them into two classes; small and large vehicles. In our
study, we detect each vehicle type separately using a higher number of features.

Previous work, that employ cameras fixed to buildings, use “area” as a
feature to classify vehicles ([23], [18], [4], [22]). Since that feature becomes
invalid when the distance between the camera and the scene objects change,
the area of the silhouette (size of the vehicle) is not a feature in our method
which makes it suitable for portable image acquisition platforms.

The main contribution in our study can be considered as exploiting the
information available in multiple frames of the video for vehicle classification.
The silhouettes extracted from a sequence of frames are combined to create an
“average silhouette”. This process is known as “temporal averaging of images”
in image processing community and usually used to eliminate noise. We also
investigated the use of decision-level fusion, where the classification is made
for each video frame separately and the “consensus” of these decisions is de-
termined. When a predefined percentage of samples make the same decision,
that vehicle type is chosen. We experimentally show that both of these multi-
frame approaches perform better than using a single frame. The classification
performance of consensus approach is not as good as that of averaging silhou-
ettes; however it’s computation time is shorter. We also present the results of
the real-time implementation of our method using consensus approach.

The vehicle types that we worked on are motorcycle, car (sedan) and van
(minibus). We applied two different methods for vehicle classification. First
one uses shape based features (such as convexity, elongation etc.) one after
another in a flowchart (from now on will be referred as “flowchart method”).
The second one is K nearest neighbour (kNN) classification. Vehicle classifi-
cation with kNN was used many times before (e.g. [23], [21], [22]). Although
they did not employ omnidirectional cameras, we can consider kNN with sin-
gle silhouettes as the benchmark method and compare it with using multiple
silhouettes for kNN classification.
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Our omnidirectional video dataset, together with binary frames after back-
ground subtraction, can be downloaded from our website1. The organization
of the paper is as follows. In Section 2, we introduce the details of silhouette
averaging and consensus of silhouettes approaches. Vehicle detector and clas-
sifier methods are described in Section 3. Experiment results are presented in
Section 4 and finally conclusions are given in Section 5.

2 Using Multiple Silhouettes

The silhouettes are obtained after a background subtraction step and a mor-
phological operation step. For background subtraction, the algorithm proposed
in [28] is used, which was one of the best performing algorithms in the review
of Sobral and Vacavant [25].

We use the silhouettes as they are extracted from omnidirectional images.
We also evaluated the approach where the silhouettes are unwarped from omni-
directional image sampling to perspective image sampling before classification.
However, it did not improve the accuracy. We understand that the features we
employ (elongation, convexity etc.) are not very sensitive to small amounts of
bending in the silhouettes. Thus, we decided not to increase the computation
time by unwarping.

In the literature, methods were proposed for using omnidirectional images
but computing image features (HOG or SIFT) in the unwarped domain [7],[13].
In this way, if the technique works better on unwarped images, the cost of
unwarping is avoided. In our study, since we did not see any improvement by
unwarping, any technique to compute unwarped features does not bring any
advantage.

2.1 Average Silhouettes

To obtain an “average silhouette” we need to define which frames are used
and the silhouettes from these frames should coincide spatially. If a silhouette
is in range of a previously specified angle (which we set as [-30◦, 30◦], and
0◦ is assigned to the direction that camera is closest to the road), then the
silhouette is rotated with respect to the centre of omnidirectional image so that
the centre of the silhouette is at the level of the image centre. This operation,
also described in Figure 2, is repeated until the object leaves the angle range.
Rotating the silhouettes as described is enough to align them since the vehicles
are supposed to pass through the road, i.e. they can not have random rotations
and sizes. Therefore, our method does not require a more complicated shape
alignment process like the one proposed in [2].

Silhouettes obtained in the previous step are added to each other so that the
centre of gravity of each blob coincides with others. The cumulative image is
divided by the number of frames which results in “average silhouette” (Figure

1 http://cvrg.iyte.edu.tr
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Fig. 2: Top: An example omnidirectional video frame containing a van.
Bottom- left: The same frame after background subtraction. Also the angle
range that we used, namely [30◦, -30◦], is superimposed on the image. Centroid
of the largest blob is at 29◦. Bottom-right: Rotated blob after morphological
operations.

3). We then apply an intensity threshold to convert average silhouette to a
binary image and also to eliminate less significant parts which were supported
by a lower number of frames. Thus we can work with more common part
rather than taking into account every detail around a silhouette (Figure 3g).
The threshold we select here eliminates the lowest 25% of grayscale levels.

2.2 Consensus of Silhouettes

In addition to silhouette averaging, we present a second way to merge infor-
mation in multiple frames. The largest blob for each frame is considered as an
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input for the single frame classification method and a decision is made for each.
When a predefined percentage, for instance 50%, of the samples make the same
prediction, we consider that there is a “consensus” among the predictions of
the frames and we call that prediction as the vehicle type.

In our analysis, we have seen that silhouette extraction for consensus of
silhouettes is computationally cheaper than the average silhouette method. For
consensus of silhouettes, morphological operations and rotation of silhouette
with respect to omnidirectional image centre takes 15 ms per frame, although
for average silhouette, extra two operations, coinciding centres and addition
to previous silhouettes takes 169 ms per frame.

3 Detection and Classification

We compare three different approaches of using silhouettes, namely single sil-
houette that is closest to 0◦, averaged silhouette and the consensus of multiple
silhouettes. We apply two methods of classification details of which are given
in the following.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: Example binary images when the centroid of the object is at (a) 29◦

(b) 26◦ (c) 0◦ (d) -11◦ (e) -29◦. (f) Resultant “average silhouette” obtained
by the largest blobs in the binary images. (g) Thresholded silhouette and the
minimum bounding rectangle.
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3.1 Flowchart Method

The steps of this method are summarized in Figure 4. Firstly, a convexity
threshold is applied to a silhouette obtained after morphological operations. If
the silhouette averaging approach is used, then the silhouette here is the one
obtained by the procedure described in Section 2.1. Otherwise it is a single-
frame silhouette.

Fig. 4: Block diagram of the detection and classification system. With the
proposed method, multiple frames are processed and the extracted average
silhouette is used instead of a silhouette from a single frame.

The convexity (1) is used to eliminate detections that may not belong to
a vehicle class or poorly extracted silhouettes from vehicles.

Convexity =
Oconvexhull

O
(1)

where Oconvexhull is the perimeter of the convex hull and O is the perimeter
of the original contour [27]. Convexity is always ≤ 1. Since we do not look for
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a jagged silhouette, the set of detected silhouettes {Ds} is filtered to obtain a
set of valid detections {Dv} using the convexity threshold ρ.

{Dv} = {Ds|ConvexityDs
> ρ} (2)

We set ρ = 0.75 for our experiments. Figure 5 shows an example silhouette
which is eliminated by convexity threshold.

Fig. 5: An extracted silhouette and its convex hull. It is extracted from a van
example using a single frame and its convexity is computed as 0.73 which is
lower than the threshold. ρ = 0.75.

The set of valid detections {Dv} is passed to the classification step. The
features we employ for classification are; elongation, rectangularity, and Hu
moments. Elongation (3) is computed as follows

Elongation = 1−W/L (3)

whereW is the short and L is the long edge of the minimum bounding rectangle
(Figure 3g) which is the smallest rectangle that contains every point in the
shape [27].

We observed that the elongation is able to discriminate motorcycles from
other vehicle types with a threshold. Then, the set of detected motorcycles
{Dm} is given by

{Dm} = {Dv|ElongationDv
< τ} (4)

where τ is the elongation threshold. τ is determined using the samples in the
training set.

Rectangularity (5) measures how much a shape fills its minimum bounding
rectangle [27]:

Rectangularity = As/Al (5)
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where As represents area of a shape and Al represents area of the bounding
rectangle. Rectangularity is a meaningful feature to distinguish between sedan
cars and vans since the silhouette of a van has a tendency to fill its minimum
bounding box. In our trials, however, we observed that setting a threshold for
rectangularity alone is not effective enough to discriminate cars from vans. To
discriminate the cars and vans better, we defined an extra feature, named P1

(8), which is based on Hu moments and measures if an extracted silhouette
resembles the car silhouettes in the training set more than it resembles the
van silhouettes. P1 (8) is an exemplar-based feature rather than a rule-based
one and it is computed as follows:

C1 =
1

#cars

#cars∑
i=0

I2(Ds, Cari) (6)

V1 =
1

#vans

#vans∑
i=0

I2(Ds, V ani) (7)

P1 = C1 − V1 (8)

For a new sample, P1 corresponds to the difference between the average I2
(9) distance to the cars in the training set and the average I2 distance to the
vans in the training set. The mentioned I2 distance is based on 7 Hu moments
[16], used for computing the similarity of two silhouettes:

I2(A,B) =
∑

i=1...7

∣∣mA
i −mB

i

∣∣ (9)

mA
i = sign(hAi ) · log(hAi ) (10)

mB
i = sign(hBi ) · log(hBi ) (11)

where hAi and hBi are the Hu moments of shapes A and B respectively [3].

If a detection is not classified as a motorcycle, i.e. Elongation > τ , then
it can be either a car or a van. To determine the decision boundary between
car and van classes we trained a SVM classifier (given in Section 4.1) with a
linear kernel using the samples in the training set.
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3.2 K Nearest Neighbours

Without using classification scheme in Figure 4, we applied kNN classification
on our dataset. Since vehicle classification with kNN using features extracted
from a single silhouette can be considered as a benchmark method (e.g. [23],
[21], [22]), this way we can investigate the improvement gained by using mul-
tiple frames.

kNN method is applied on average silhouette, consensus of silhouettes,
and single frame silhouette approaches. On our dataset we used the features
of elongation, rectangularity, convexity. We also computed solidity and ellipse
axes ratio features. However, increasing the number of features did not improve
the results.

4 Experimental Results

4.1 Experiments With a Catadioptric Camera

Using a Canon 600D SLR camera and a mirror apparatus2 we obtained a cata-
dioptric omnidirectional camera. We constructed a dataset of 49 motorcycles,
124 cars and 104 vans totalling 277 vehicle instances. Dataset is divided into
training and test sets. Training set contains approximately 60% percent of
the total dataset corresponding to 29 motorcycles, 74 cars and 62 vans. The
rest is used as test set. To ensure the randomization of data samples, the pro-
cedure is repeated three times with the dataset split randomly into training
and test samples. We summarize our experiment results under two subsections
belonging to the flowchart method and kNN classification.

4.1.1 Flowchart Method Experiments

We set ρ = 0.75 and SVM (using linear kernel)’s parameter C = 0.2 for our
training set. The elongation threshold is determined by choosing the highest
elongation values obtained from motorcycles in the training set since this value
easily discriminates motorcycles from other vehicles (this fact can also be
observed in Fig. 9b).

Regarding the training of car-van classifier, Figures 6a and 6c show the
SVM’s linear decision boundary, trained with the average silhouette and sin-
gle frame silhouette respectively. Training the single frame method with the
extracted single frame silhouettes would not be fair since they contain poorly
extracted silhouettes. Therefore, samples are manually annotated to be used
for the training of single frame method. The silhouette of the object to be an-
notated is superimposed onto the original video frame and manually corrected,
i.e. all pixels that belong to the object are turned on, all others are turned off.
Test results with and without averaging silhouettes are shown in Figures 6b
and 6d respectively.

2 http://www.gopano.com
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(a) (b)

(c) (d)

Fig. 6: a) Training result of SVM using the average silhouette method. (b)
Test result with the average silhouette method. (c) Training result of SVM
without averaging silhouettes (single frame method). (d) Test result without
averaging silhouettes, i.e. using single frame silhouettes.

Table 1: Average classification accuracies for each class when ρ = 0.75 and
C = 0.2 for the average silhouette method and for the single frame method.

Motorcycle Car Van Overall
Average

silhouette method 95% 98% 83% 92%
Single frame

method 80% 78% 81% 79%

We report the average results in Table 1. Values in the table correspond
to what percentage of the samples of a vehicle type is classified correctly.
Not surprisingly, exploiting the information in multiple frames by averaging
silhouettes has a better performance than using the silhouette in a single frame.

Tables 2 and 3 depict the number of correctly classified (labeled) and mis-
classified samples for each class with the average silhouette and single frame
silhouette methods respectively. Missed samples are the ones eliminated by
convexity threshold. Figure 7 shows an example where a car is correctly la-
beled using the average silhouette, whereas it is misclassified using a single
silhouette. Such cases constitute the main performance difference between the
two compared methods.

Regarding the convexity threshold ρ, we also tested values other than 0.75.
For lower thresholds, less number of samples are eliminated but those samples
are not classified correctly. For instance, with ρ = 0.6 out of 20 missed van
samples (given in Table 2), 17 were passed but they all were classified as cars.
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(a)

(b) (c) (d)

Fig. 7: Example car silhouettes (a) Original frame (b) Result of using a single
silhouette which is misclassified with rectangularity = 0.56 and P1 = 3.381,
(c) Average silhouette, (d) Thresholded average silhouette classified as car
rectangularity = 0.68 and P1 = −1.602.

For ρ > 0.75, number of missed samples start to increase immediately some of
which were correctly classified with ρ = 0.75. Therefore, accuracy decreases.

Thanks to using an effective background subtraction algorithm [28], our
approach is robust to varying illumination and cases with shadows. Silhouettes
are successfully extracted for samples with shining (mostly due to the windows
of cars) and low contrast. Regarding shadows, in most frames only a minor
amount of shadow is attached to the silhouette. For the frames that are severely
affected by the shadow, the main advantage of our method shows its value.
Effects of shadows are eliminated during silhouette averaging and thresholding.
An visual example is given in Figure 8.
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Table 2: Confusion matrix for the approach of using average silhouettes as sum
of three folds (For each fold there are 20 motorcycles, 50 cars, and 42 vans in
test set).

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 57 0 0

Car 2 146 2
Van 1 4 104

Missed 0 0 20

Table 3: Confusion matrix for single frame method as sum of three folds (For
each fold there are 20 motorcycles, 50 cars, and 42 vans in test set).

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 48 8 13

Car 0 118 2
Van 2 20 101

Missed 10 4 10

Fig. 8: Left: One of the silhouettes affected by shadow (sharp extrusion at the
bottom of the silhouette). Right: Thresholded average silhouette of the same
sample (van).

We also examined the performance of “consensus of silhouettes” with the
flowchart method. Training set consists of annotated silhouettes. Thresholds,
and SVM model used in scheme (cf. Figure 4) are obtained from the train-
ing set. As mentioned before, in consensus approach we require a predefined
percentage of the samples make the same prediction. Table 4 shows classi-
fication accuracies when required consensus percentage changes from 70% to
34%. 34% is the lowest possible consensus percentage since after this value, the
chosen class is no longer becomes the largest group. Samples having consen-
sus value less than the defined percentage are assumed to be misclassified (i.e.
false-negative). Table 5 shows the confusion matrix for the consensus approach
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(34%). When we compare Table 1 and Table 4, we observe that the average
silhouette approach has the highest performance. The overall performance of
consensus approach (34%) is slightly below the single frame silhouette ap-
proach. An important point is the required time to compute the features in
the flowchart method. In our analysis we saw that computing P1 takes 5.46
seconds, while the rest of the features take only 7 milliseconds.

Table 4: Classification accuracies for each class for consensus approach. Re-
quired consensus percentage changes from 70% to 34%.

Threshold Motorcycle Car Van Overall
70% 83% 50% 40% 52%
60% 87% 63% 55% 64%
50% 90% 71% 67% 73%
40% 93% 73% 67% 74%
34% 95% 73% 67% 75%

Table 5: Confusion matrix for consensus approach as sum of three folds (For
each fold there are 20 motorcycles, 50 cars, and 42 vans in test set).

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 57 5 18

Car 0 109 6
Van 0 11 84

Missed 3 25 18

4.1.2 K Nearest Neighbour Experiments

As mentioned before, we also examined the classification performance of kNN.
Figure 9a shows the features of the annotated silhouettes of all samples (using
Euclidean distance) in 3D where dimensions are rectangularity, elongation and
convexity. Actual class labels are indicated with different shapes and colours.
Top-view of Figure 9a is shown in Figure 9b, where x and y axes refer to
rectangularity and elongation respectively. It can be observed that elongation
plays a dominant role to discriminate motorcycle class from others. Figure
9c shows the 2D space with dimensions convexity and rectangularity. Rect-
angularity is not adequate to discriminate cars from vans. With the help of
convexity and elongation, car/van classification becomes more accurate.

By dividing the dataset as train and test parts randomly and repeating
the experiments three times, we computed average accuracies for different K
values. In our experiments, K is selected 5, 10, and 15, and the results are
quite similar to each other. Table 6 shows the results for averaged silhouettes,
consensus of silhouettes, and single frame silhouettes when K is selected 5.
We again observe that the average silhouette is the best performing approach.
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Performance of consensus approach is not as good as average silhouette, but
it is considerably better than using single frame silhouettes.

Tables 7, 8 and 9 show the confusion matrices of average silhouette, con-
sensus and single frame approaches respectively, to enable readers examine the
number of true-positives, false-positives and false-negatives rather than only
seeing the average accuracy.

Table 6: Classification accuracies with kNN (K=5) for the average silhouette,
consensus of silhouettes and single frame silhouette approaches.

Motorcycle Car Van Overall

Average
silhouette 97% 98% 99% 98%

Consensus of
silhouettes 95% 58% 100% 80%

Single frame
silhouette 53% 53% 72% 60%

Table 7: Confusion matrix for the average silhouette approach classified with
kNN (K = 5) as sum of three folds.

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 58 0 0

Car 0 147 1
Van 2 3 125

Table 8: Confusion matrix for the consensus approach classified with kNN (K
= 5) as sum of three folds.

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 57 28 0

Car 1 87 0
Van 2 35 126

Table 9: Confusion matrix for the single silhouette approach classified with
kNN (K = 5) as sum of three folds.

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 32 63 5

Car 5 80 30
Van 23 7 91
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(a)

(b) (c)

Fig. 9: Extracted features of the annotated silhouettes. (a) All dimensions. (b)
First two dimensions. (c) Last two dimensions.

Since P1 feature is not used in kNN classification, calculation of features
is much faster than the flowchart method. Regarding the two multi-frame
approaches, although the performance of consensus approach is lower than
average silhouette approach, it is more time efficient. Total time for consensus
approach with kNN classification is 250 ms including silhouette and feature
extraction (assuming 10 frames are used), whereas average silhouette with
kNN takes 1850 ms. There is a trade-off between total computation time and
classification accuracy for these two multiple frame methods. Computation
time for the single frame method is 15 ms which is the shortest not surprisingly.
However, consensus approach is also fast enough to be employed in a real-time
implementation (an example is given in Section 4.2).



18 Hakki Can Karaimer et al.

4.2 Real-time Experiments With a Fisheye Camera

Our experience in Section 4.1 reveals that if we want to use multiple silhouettes
to increase the performance in a real-time system, consensus approach and the
kNN classification is our only choice. Thus, we employed them in our real-time
implementation. The overall classification accuracy was recorded as 80% for
consensus+kNN approach in Section 4.1. To validate our results, we conduct
another experiment. This time we used a fisheye camera. In this way, we can
also investigate if the performance depends on the camera type or not. Our
fisheye camera is Oncam Evolution 5MP 360-degree 3.

We again constructed a dataset with car, motorcycle and van samples.
Test set consists of 76 motorcycles, 126 cars and 124 vans totalling 326 vehi-
cle instances. Table 10 presents the classification results. Overall accuracy is
computed as 81% which is very close to the one obtained with the consensus
approach in the catadioptric omnidirectional camera (Table 6).

Table 10: Confusion matrix the fisheye camera experiment.

Actual class: Actual class: Actual class:
Labeled as: Motorcycle Car Van
Motorcycle 74 8 6

Car 2 95 23
Van 0 23 95

Class accuracy 97.4% 75.4% 76.6%

Another important property of the experiment in this subsection is that
we added a tracking module to be able to handle the cases where there are
multiple moving objects in the scene. The tracking module consists of tracking
the blobs with Kalman Filter [26] and association between the blobs in current
frame and previously detected blobs by using Hungarian Algorithm [19], [24].
2D position (object centroid) and velocity are predicted with Kalman Filter.
Hungarian Algorithm finds detection-track pairs with minimum cost which is
calculated as the Euclidean distance between the centroid of the detection and
the associated track.

Figure 10 shows an example of handling multiple objects. While an ob-
ject labeled as car leaving the scene, another one is detected and labeled as
unknown since its classification is not started yet. Later on, its silhouettes
are classified frame by frame (Figure 10c) and final class is determined as car
(Figure 10d). This sequence is also a good example of occlusion, since some of
the silhouettes of the cars are partially occluded by the steady white pick-up
on the road. We see that remaining silhouettes are enough to correctly classify
the object as ’car’.

3 http://www.oncamgrandeye.com/security-systems/
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(a) (b)

(c) (d)

Fig. 10: Multiple object classification with consensus of silhouettes approach
and kNN. (a) A car moving to the right was already classified and is about to
leave the scene. At the same time, another car is entering the scene from the
right side, detected as a moving object. Both cars are tracked with Kalman
filter. (b) Recently entered car is being tracked, its label is still ’unknown’ since
classification is about to start. (c) Classification has been started, silhouettes
are labeled frame by frame. (d) Object exits the classification range ([-30◦,30◦])
and the final class is determined as ’car’.

5 Conclusions

We proposed to use multiple frames of a video for shape based classification
of vehicles. We applied two different classification methods and compared the
performance of using a single silhouette with the performance of using multi-
ple frames. The first classification method is using features one after another
in a flowchart. The second one is kNN classification. We decided to include
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kNN in our experiments because using single frame silhouette with kNN clas-
sification can be considered as the benchmark method in shape based vehicle
classification. Results of the experiments indicate a significant improvement
in classification accuracy by using multiple frames.

When two alternative approaches of using multiple frames are compared,
average silhouette has a higher performance than using consensus of deci-
sions of multiple frames. However, consensus approach has the advantage of
being computationally cheaper. In fact, we exploited this advantage and im-
plemented a real-time vehicle classifier with consensus approach and kNN clas-
sification. We tested its performance by experiments.

In essence, the advantage of the proposed approach is utilizing the infor-
mation available in a longer time interval rather than a single frame. Therefore
the improvement can be expected for other objects types and domains other
than traffic applications.

We use a portable image acquisition platform and our method is indepen-
dent of the camera-object distance which is more practical than the previously
proposed methods that fix the cameras to buildings and use the object’s area
as a feature since the distance to objects stays same.
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